Diagnostic Imaging Pathways - Focal Liver Lesion (Investigation)

{tab=Pathway Home}

Population Covered By The Guidance

This pathway provides guidance on imaging in patients with focal liver lesions, dependent on whether the patient has risk factors for primary cancer or metastases or whether the lesion is ‘incidental’.

Date reviewed: September 2015

Date of next review: 2017/2018

Published: February 2016

Quick User Guide

Move the mouse cursor over the PINK text boxes inside the flow chart to bring up a pop up box with salient points.
Clicking on the PINK text box will bring up the full text.
The relative radiation level (RRL) of each imaging investigation is displayed in the pop up box.

SYMBOL RRL EFFECTIVE DOSE RANGE
No radiation None 0
Minimal radiation Minimal < 1 millisieverts
Low radiation Low 1-5 mSv
Medium radiation Medium 5-10 mSv
High radiation High >10 mSv

{tab=Pathway}

Pathway Diagram

{tab=Images}

Image Gallery


Note: These images open in a new page
1 Click to view full size image

Hepatic Haemangioma

Image 1 (Computed Tomography): Post-contrast images demonstrating initial peripheral enhancement, followed by delayed filling of the lesion with contrast. These features are typical of a haemangioma.

2a Click to view full size image

Hepatic Haemangioma

Image 2a, 2b and 2c (Triphasic Computed Tomography): Non-contrast scan (Image 2a) demonstrates a subtle low attenuation lesion in segment 6 of the liver (arrow). There is globular peripheral enhancement of the lesion in the post contrast arterial phase scan (Image 2b) with delayed filling in of the lesion in the portal venous phase (Image 2c).

2b Click to view full size image
2c Click to view full size image
2d Click to view full size image

Image 2d (Ultrasound): Ultrasound scan demonstrating the liver lesion in same patient.

3a Click to view full size image Hepatic Haemangioma

Image 3a (H&E, x2.5): Histological section of a hepatic haemangioma showing variously sized, dilated and congested blood vessels set in a fibrous stroma with residual islands of liver parenchyma.

4a Click to view full size image

Hepatic Adenoma

Image 4a and 4b (Computed Tomography): Coronal and axial views demonstrating several enhancing liver lesions.

4b Click to view full size image
4c Click to view full size image

Image 4c (Ultrasound): Ultrasound scan demonstrating the liver lesions in same patient.

5a Click to view full size image

Hepatic Focal Nodular Hyperplasia

Image 5a and 5b (Triphasic Computed Tomography): The arterial phase scan (Image 5a) shows a hyperattenuating nodular lesion (narrow arrow) with the typical central scar (broad arrow) in segment 4 of the liver. On the delayed portal venous phase (Image 5b), the lesion becomes isoattenuating (arrow).

5b Click to view full size image
6a Click to view full size image

Hepatic Focal Nodular Hyperplasia

Image 6a, 6b, 6c and 6d (Magnetic Resonance Imaging): Gadolinium-enhanced T1-weighted MRI (Image 6a) demonstrates an ill-defined low-signal intensity mass in segment 4 of the liver with intense enhancement in the arterial phase (Image 6b). Minor enhancement persists in the portal venous phase (Image 6c) and the lesion becomes isointense with enhancement of the central scar (arrow) on the delayed image (Image 6d).

6b Click to view full size image
6c Click to view full size image
6d Click to view full size image
7 Click to view full size image

Simple Hepatic Cyst

Image 7 (Ultrasound): Simple-appearing cyst in the left lobe of liver.

8a Click to view full size image

Hepatocellular Carcinoma

Image 8a and 8b (Ultrasound): Within segment 6 of the liver, there is an approximately 2cm subcapsular hypoechoic lesion (arrow) which does not demonstrate any increased vascularity.

8b Click to view full size image
8c Click to view full size image Image 8c, 8d, 8e and 8f (Triphasic Computed Tomography): CT of the same patient shows a cirrhotic liver with patent hepatic and portal veins as well as ascites. Within segment 6, there is a nodular area which demonstrates slight enhancement corresponding to the lesion identified on ultrasound (arrow). This lesion could represent either a dysplastic cirrhotic nodule or an early hepatocellular carcinoma.

8d Click to view full size image
8e Click to view full size image
8f Click to view full size image
8g Click to view full size image Image 8g, 8h, 8i and 8j (Magnetic Resonance Imaging): MRI of the same patient demonstrates a lesion measuring approximately 2.5 cm in diameter on the inferomedial aspect of segment 5 in a subcapsular location. This is bulging the capsule of the liver at the level of the upper pole of the right kidney. The lesion is essentially isointense to the rest of the liver on T1 weighted imaging (out of phase) but is slightly hyperintense on in-phase imaging suggesting that the rest of the liver has some fatty infiltration. The lesion is slightly hyperintense on first echo T2 but is not clearly visible on more heavily weighted T2 imaging. The lesion shows arterial enhancement but washes out in the portal venous phase, with the rim of the lesion remaining enhanced. The appearances are consistent with a hepatocellular carcinoma.
8h Click to view full size image
8i Click to view full size image
8j Click to view full size image
9a Click to view full size image Hepatocellular Carcinoma

Image 9a and 9b : Hepatectomy specimens showing a multifocal hepatocellular carcinoma with areas of necrosis and haemorrhage arising in a cirrhotic liver.

9b Click to view full size image
9c Click to view full size image Image 9c (H&E, x2.5) and 9d (H&E, x10): Histological sections of a hepatocellular carcinoma arising on a background of cirrhosis. The usual lobular architecture is replaced by irregular and thickened trabeculae of malignant hepatocytes. There is mild nuclear pleomorphism.
9d Click to view full size image

{tab=Teaching Points}

Teaching Points

{tab=HS1|hidden}

Focal Liver Lesion (Investigation)

Risk factors for non-cystic focal liver lesions

{tab=HS2|hidden}

Liver Lesion (Incidental)

{tab=HS3|hidden}

Hepatocellular Cancer (Surveillance)

{tab=HS4|hidden}

Hepatocellular Cancer (Suspected)

{tab=HS5|hidden}

Focal Liver Lesion (History of Malignancy)

{tab=HS6|hidden}

Ultrasound (US) ± Contrast-Enhanced Ultrasound (CEUS)

{tab=HS7|hidden}

Computed Tomography (CT)

{tab=HS8|hidden}

Magnetic Resonance Imaging (MRI)

{tab=HS9|hidden}

18F-fluorodeoxyglucose (FDG) Positron Emission Tomography-Computed Tomography (PET-CT)

{tab=HS10|hidden}

Technetium-99m-labelled Red Blood Cell Scan (99mTc-RBC scan)

{tab=HS11|hidden}

Image-guided Biopsy

{tab=References}

References

Date of literature search: September 2015

The search methodology is available on request. Email

References are graded from Level I to V according to the Oxford Centre for Evidence-Based Medicine, Levels of Evidence. Download the document

  1. Gore RM, Newmark GM, Thakrar KH, Mehta UK, Berlin JW. Hepatic incidentalomas. Radiol Clin North Am. 2011;49(2):291-322. (Review article). View the reference
  2. Moynihan R, Doust J, Henry D. Preventing overdiagnosis: how to stop harming the healthy. BMJ. 2012;344:e3502. (Level III evidence). View the reference
  3. Schillaci O, Danieli R, Manni C, Capoccetti F, Simonetti G. Technetium-99m-lebelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera. Eur J Nucl Med Mol Imaging. 2004;34:1011-5. (Level III evidence). View the reference
  4. Klein D, Jenett M, Gassel HJ, et al. Quantitative dynamic contrast - enhanced sonography of hepatic tumors. Eur Radiol. 2004;14:1082-91. (Level III evidence). View the reference
  5. Seitz K, Strobel D, Bernatik T, Blank W, Friedrich-Rust M, Herbay A, et al. Contrast-Enhanced Ultrasound (CEUS) for the characterization of focal liver lesions - prospective comparison in clinical practice: CEUS vs CT (DEGUM multicenter trial). Parts of this manuscript were presented at the Ultrasound Dreilandertreffen 2008, Davos. Ultraschall Med. 2009;30(4):383-9. (Level II evidence). View the reference
  6. Claudon M, Dietrich CF, Choi BI, Cosgrove DO, Kudo M, Nolsøe CP, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver – update 2012. Ultraschall in Med. 2013;34(1):11-29. (Guideline). View the reference
  7. Sporea I, Martie A, Bota S, Sirli R, Popescu A, Danila M. Characterization of focal liver lesions using contrast enhanced ultrasound as a first line method: a large monocentric experience. J Gastrointestin Liver Dis. 2014;23(1):57-63. (Level III evidence). View the reference
  8. Won SY, Singh N, Lim BG, Stella D, Gibson R. Hepatic contrast-enhanced ultrasound: impact of its introduction in the Australian context. J Med Imaging Radiat Oncol. 2014;58(1):38-45. (Level III evidence). View the reference
  9. Whitney WS, Herfkens RJ, Jeffrey RB, et al. Dynamic breath-hold multiplanar spoiled gradient-recalled MR imaging with gadolinium enhancement for differentiating hepatic haemangiomas from malignancies at 1.5T. Radiology. 1993;189:863-70. (Level III evidence). View the reference
  10. Boutros C, Katz SC, Espat NJ. Management of an incidental liver mass. Surg Clin North Am. 2010;90(4):699-718. (Review article). View the reference
  11. Buell JF, Tranchart H, Cannon R, Dagher I. Management of benign hepatic tumors. Surg Clin North Am. 2010;90(4):719-35. (Review article). View the reference
  12. Leslie DF, Johnson CD, MacCarty RL, et al. Single-pass CT of hepatic tumors: value of globular enhancement in distinguishing hemangiomas from hypervascular matastases. AJR Am J Roentgenol. 1995;165:1403-6. (Level III evidence). View the reference
  13. Yamashita Y, Ogata I, Urata J, et al. Cavernous hemangioma of the liver: pathologic correlation with dynamic CT findings. Radiology. 1997;203:121-6. (Level III evidence). View the reference
  14. Royal HD, Brown ML, Drum DE, et al. Procedure guideline for hepatic and splenic imaging. Society of Nuclear Medicine. J Nucl Med. 1998;39:1114-6. (Guideline). View the reference
  15. Federle MP, Filly RA, Moss AA. Cystic hepatic neoplasms: complementary roles of CT and sonography. AJR Am J Roentgenol. 1981;136:345-8. (Level III evidence). View the reference
  16. Margolis NE, Shaver CM, Rosenkrantz AB. Indeterminate liver and renal lesions: comparison of computed tomography and magnetic resonance imaging in providing a definitive diagnosis and impact on recommendations for additional imaging. J Comput Assist Tomogr. 2013;37(6):882-6. (Level III evidence). View the Reference
  17. Cogley JR, Miller FH. MR imaging of benign focal liver lesions. Radiol Clin North Am. 2014;52(4):657-82. (Review article). View the reference
  18. Rode A, Bancel B, Douek P, et al. Small nodule detection in cirrhotic livers: evaluation with US, spiral CT, and MRI and correlation with pathologic examination of explanted liver. J Comput Assist Tomogr. 2001;25:327-36. (Level II evidence). View the reference
  19. Purysko AS, Remer EM, Coppa CP, Obuchowski NA, Schneider E, Veniero JC. Characteristics and distinguishing features of hepatocellular adenoma and focal nodular hyperplasia on gadoxetate disodium-enhanced MRI. AJR Am J Roentgenol. 2012;198(1):115-23. (Level III evidence). View the reference
  20. Harvey CJ, Albrecht T. Ultrasound of focal liver lesions. Eur Radiol. 2001;11:1578-93. (Review article). View the reference
  21. Grieser C, Steffen IG, Seehofer D, Kramme IB, Uktolseya R, Scheurig-Muenkler C, et al. Histopathologically confirmed focal nodular hyperplasia of the liver: gadoxetic acid-enhanced MRI characteristics. Magn Reson Imaging. 2013;31(5):755-60. (Level III evidence). View the reference
  22. Jang HJ, Kim TK, Lim HK, et al. Hepatic hemangioma: atypical appearances on CT, MR imaging, and sonography. AJR Am J Roentgenol. 2003;180:135-41. (Review article). View the reference
  23. Ziessman HA, Silverman PM, Patterson J, et al. Improved detection of small cavernous hemangiomas of the liver with high-resolution three-headed SPECT. J Nucl Med. 1991;32:2086-91. (Level III evidence). View the reference
  24. Birnbaum BA, Weinreb JC, Megibow AJ, et al. Definitive diagnosis of hepatic hemangiomas: MR imaging versus Tc-99m-labeled red blood cell SPECT. Radiology. 1990;176:95-101. (Level III evidence). View the reference
  25. Wee A. Fine-needle aspiration biopsy of hepatocellular carcinoma and related hepatocellular nodular lesions in cirrhosis: controversies, challenges, and expectations. Patholog Res Int. 2011;2011:17. (Review article). View the reference
  26. Torzilli G, Minagawa M, Takayama T, Inoue K, Hui A-M, Kubota K, et al. Accurate preoperative evaluation of liver mass lesions without fine-needle biopsy. Hepatology. 1999;30(4):889-93. (Level II evidence). View the reference
  27. Silva MA, Hegab B, Hyde C, Guo B, Buckels JA, Mirza DF. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut. 2008;57(11):1592-6. (Level II/III evidence). View the reference
  28. Caturelli E, Solmi L, Anti M, et al. Ultrasound guided fine needle biopsy of early hepatocellular carcinoma complicating liver cirrhosis: a multicentre study. Gut. 2004;53:1356-62. (Level II evidence). View the reference
  29. Chang S, Kim SH, Lim HK, Lee WJ, Choi D, Lim JH. Needle tract implantation after sonographically guided percutaneous biopsy of hepatocellular carcinoma: evaluation of doubling time, frequency, and features on CT. AJR Am J Roentgenol. 2005; 185:400-5. (Level III evidence). View the reference
  30. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127(5 Suppl 1):S35-50. (Review article). View the reference
  31. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020-2. (Review article). View the reference
  32. European Association for the Study of the Liver EOfRaToC. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908-43. (Guidelines). View the reference
  33. Omata M, Lesmana LA, Tateishi R, Chen PJ, Lin SM, Yoshida H, et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int. 2010;4(2):439-74. (Guidelines). View the reference
  34. Kudo M, Izumi N, Kokudo N, Matsui O, Sakamoto M, Nakashima O, et al. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig Dis. 2011;29(3):339-64. (Guidelines). View the reference
  35. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42(5):1208-36. (Guidelines). View the reference
  36. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001;35(3):421-30. (Review article). View the reference
  37. Leoni S, Piscaglia F, Golfieri R, Camaggi V, Vidili G, Pini P, et al. The impact of vascular and nonvascular findings on the noninvasive diagnosis of small hepatocellular carcinoma based on the EASL and AASLD criteria. Am J Gastroenterol. 2010;105(3):599-609. (Level II evidence). View the reference
  38. Della Corte C, Colombo M. Surveillance for hepatocellular carcinoma. Semin Oncol. 2012;39(4):384-98. (Review article). View the reference
  39. Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130(7):417-22. (Level II evidence). View the reference
  40. Kansagara D, Papak J, Pasha AS, O'Neil M, Freeman M, Relevo R, et al. Screening for hepatocellular carcinoma in chronic liver disease: a systematic review. Ann Intern Med. 2014;161(4):261-9. (Level I/II evidence). View the reference
  41. Trevisani F, Cantarini MC, Labate AM, De Notariis S, Rapaccini G, Farinati F, et al. Surveillance for hepatocellular carcinoma in elderly Italian patients with cirrhosis: effects on cancer staging and patient survival. Am J Gastroenterol. 2004;99(8):1470-6. (Level III evidence). View the reference
  42. Trevisani F, De Notariis S, Rapaccini G, Farinati F, Benvegnu L, Zoli M, et al. Semiannual and annual surveillance of cirrhotic patients for hepatocellular carcinoma: effects on cancer stage and patient survival (Italian experience). Am J Gastroenterol. 2002;97(3):734-44. (Level III evidence). View the reference
  43. Wong LL, Limm WM, Severino R, Wong LM. Improved survival with screening for hepatocellular carcinoma. Liver Transpl. 2000;6(3):320-5. (Level III evidence). View the reference
  44. Yu EW, Chie WC, Chen TH. Does screening or surveillance for primary hepatocellular carcinoma with ultrasonography improve the prognosis of patients? Cancer J. 2004;10(5):317-25.
  45. Yuen MF, Cheng CC, Lauder IJ, Lam SK, Ooi CG, Lai CL. Early detection of hepatocellular carcinoma increases the chance of treatment: Hong Kong experience. Hepatology. 2000;31(2):330-5. (Level III evidence). View the reference
  46. Midorikawa Y, Takayama T, Shimada K, Nakayama H, Higaki T, Moriguchi M, et al. Marginal survival benefit in the treatment of early hepatocellular carcinoma. J Hepatol. 2013;58(2):306-11. (Level III evidence). View the reference
  47. Edenvik P, Davidsdottir L, Oksanen A, Isaksson B, Hultcrantz R, Stal P. Application of hepatocellular carcinoma surveillance in a European setting. What can we learn from clinical practice? Liver Int. 2015;35(7):1862-71. (Level III evidence). View the reference
  48. Sherman M. The radiological diagnosis of hepatocellular carcinoma. Am J Gastroenterol. 2010;105(3):610-2. (Level IV/V evidence). View the reference
  49. Singal A, Volk ML, Waljee A, Salgia R, Higgins P, Rogers MA, et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther. 2009;30(1):37-47. (Level I evidence). View the reference
  50. Chou R, Cuevas C, Fu R, Devine B, Wasson N, Ginsburg A, et al. Imaging techniques for thedDiagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Ann Intern Med. 2015;162(10):697-711. (Level I evidence). View the reference
  51. Pocha C, Dieperink E, McMaken KA, Knott A, Thuras P, Ho SB. Surveillance for hepatocellular cancer with ultrasonography vs computed tomography: a randomised study. Aliment Pharmacol Ther. 2013;38(3):303-12. (Level II/III evidence). View the reference
  52. Bolondi L, Cillo U, Colombo M, Craxi A, Farinati F, Giannini EG, et al. Position paper of the Italian Association for the Study of the Liver (AISF): the multidisciplinary clinical approach to hepatocellular carcinoma. Dig Liver Dis. 2013;45(9):712-23. (Guidelines). View the reference
  53. Barreiros AP, Piscaglia F, Dietrich CF. Contrast enhanced ultrasound for the diagnosis of hepatocellular carcinoma (HCC): comments on AASLD guidelines. J Hepatol. 2012;57(4):930-2. (Level IV/V evidence). View the reference
  54. Sangiovanni A, Manini MA, Iavarone M, Romeo R, Forzenigo LV, Fraquelli M, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut. 2010;59(5):638-44. (Level III evidence). View the reference
  55. Serste T, Barrau V, Ozenne V, Vullierme MP, Bedossa P, Farges O, et al. Accuracy and disagreement of computed tomography and magnetic resonance imaging for the diagnosis of small hepatocellular carcinoma and dysplastic nodules: role of biopsy. Hepatology. 2012;55(3):800-6. (Level III evidence). View the reference
  56. Tanaka H, Iijima H, Nouso K, Aoki N, Iwai T, Takashima T, et al. Cost-effectiveness analysis on the surveillance for hepatocellular carcinoma in liver cirrhosis patients using contrast-enhanced ultrasonography. Hepatol Res. 2012;42(4):376-84. (Level III evidence). View the reference
  57. Xu HX, Lu MD, Liu LN, Zhang YF, Guo LH, Xu JM, et al. Discrimination between neoplastic and non-neoplastic lesions in cirrhotic liver using contrast-enhanced ultrasound. Br J Radiol. 2012;85(1018):1376-84. (Level III evidence). View the reference
  58. Dumitrescu CI, Gheonea IA, Sandulescu L, Surlin V, Saftoiu A, Dumitrescu D. Contrast enhanced ultrasound and magnetic resonance imaging in hepatocellular carcinoma diagnosis. Med Ultrason. 2013;15(4):261-7. (Level IV evidence). View the reference
  59. Webb GJ, Wright KV, Harrod EC, Gorard DA, Collier JD, Evans AK. Surveillance for hepatocellular carcinoma in a mixed-aetiology UK cohort with cirrhosis: does alpha-fetoprotein still have a role? Clin Med. 2015;15(2):139-44. (Level III/IV evidence). View the reference
  60. El-Serag HB, Kanwal F. Alpha-fetoprotein in hepatocellular carcinoma surveillance: mend it but do not end it. Clin Gastroenterol Hepatol. 2013;11(4):441-3. (Level IV/V evidence). View the reference
  61. Chang TS, Wu YC, Tung SY, Wei KL, Hsieh YY, Huang HC, et al. Alpha-fetoprotein measurement benefits hepatocellular carcinoma surveillance in patients with cirrhosis. Am J Gastroenterol. 2015;110(6):836-44. (Level III evidence). View the reference
  62. Huang TS, Shyu YC, Turner R, Chen HY, Chen PJ. Diagnostic performance of alpha-fetoprotein, lens culinaris agglutinin-reactive alpha-fetoprotein, des-gamma carboxyprothrombin, and glypican-3 for the detection of hepatocellular carcinoma: a systematic review and meta-analysis protocol. Syst Rev. 2013;2(2):37. (Level I/II evidence). View the reference
  63. Witjes CD, van Aalten SM, Steyerberg EW, Borsboom GJ, de Man RA, Verhoef C, et al. Recently introduced biomarkers for screening of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int. 2013;7(1):59-64. (Level I evidence). View the reference
  64. Giannini EG, Cucchetti A, Erroi V, Garuti F, Odaldi F, Trevisani F. Surveillance for early diagnosis of hepatocellular carcinoma: how best to do it? World J Gastroenterol. 2013;19(47):8808-21. (Guirdelines). View the reference
  65. Ronot M, Vilgrain V. Hepatocellular carcinoma: diagnostic criteria by imaging techniques. Best Pract Res Clin Gastroenterol. 2014;28(5):795-812. (Review article). View the reference
  66. Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology. 2015;275(1):97-109. (Level I/II evidence). View the reference
  67. Numata K, Fukuda H, Nihonmatsu H, Kondo M, Nozaki A, Chuma M, et al. Use of vessel patterns on contrast-enhanced ultrasonography using a perflubutane-based contrast agent for the differential diagnosis of regenerative nodules from early hepatocellular carcinoma or high-grade dysplastic nodules in patients with chronic liver disease. Abdom Imaging. 2015;40(7):2372-83. (Level III evidence). View the reference
  68. D'Onofrio M, Crosara S, De Robertis R, Canestrini S, Mucelli RP. Contrast-enhanced ultrasound of focal liver lesions. AJR Am J Roentgenol. 2015;205(1):W56-66. (Review article). View the reference
  69. Sirlin CB, Hussain HK, Jonas E, Kanematsu M, Min Lee J, Merkle EM, et al. Consensus report from the 6th international forum for liver MRI using gadoxetic acid. J Magn Reson Imaging. 2014;40(3):516-29. (Guidelines). View the reference
  70. Junqiang L, Yinzhong W, Li Z, Shunlin G, Xiaohui W, Yanan Z, et al. Gadoxetic acid disodium (Gd-EOBDTPA) enhanced magnetic resonance imaging for the detection of hepatocellular carcinoma: a meta-analysis. J Magn Reson Imaging. 2014;39(5):1079-87. (Level I/II evidence). View the reference
  71. Zech CJ, Bartolozzi C, Bioulac-Sage P, Chow PK, Forner A, Grazioli L, et al. Consensus report of the Fifth International Forum for Liver MRI. AJR Am J Roentgenol. 2013;201(1):97-107. (Guidelines). View the reference
  72. Kwon HJ, Byun JH, Kim JY, Hong GS, Won HJ, Shin YM, et al. Differentiation of small (</=2 cm) hepatocellular carcinomas from small benign nodules in cirrhotic liver on gadoxetic acid-enhanced and diffusion-weighted magnetic resonance images. Abdom Imaging. 2015;40(1):64-75. (Level III evidence). View the reference
  73. Tsurusaki M, Sofue K, Isoda H, Okada M, Kitajima K, Murakami T. Comparison of gadoxetic acid-enhanced magnetic resonance imaging and contrast-enhanced computed tomography with histopathological examinations for the identification of hepatocellular carcinoma: a multicenter phase III study. J Gastroenterol. 2016;51(1):71-9. (Level II/III evidence). View the reference
  74. Inchingolo R, De Gaetano AM, Curione D, Ciresa M, Miele L, Pompili M, et al. Role of diffusion-weighted imaging; apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver. Eur Radiol. 2015;25(4):1087-96. (Level III evidence). View the reference
  75. Sutherland T, Steele E, van Tonder F, Yap K. Solid focal liver lesion characterisation with apparent diffusion coefficient ratios. J Med Imaging Radiat Oncol. 2014;58(1):32-7. (Level III evidence). View the reference
  76. Wu LM, Xu JR, Lu Q, Hua J, Chen J, Hu J. A pooled analysis of diffusion-weighted imaging in the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Gastroenterol Hepatol. 2013;28(2):227-34. (Level II/III evidence). View the reference
  77. Li Y, Chen Z, Wang J. Differential diagnosis between malignant and benign hepatic tumors using apparent diffusion coefficient on 1.5-T MR imaging: a meta analysis. Eur J Radiol. 2012;81(3):484-90. (Level II evidence). View the reference
  78. Sherman M, Bruix J. Biopsy for liver cancer: how to balance research needs with evidence-based clinical practice. Hepatology. 2015;61(2):433-6. (Level IV/V evidence). View the reference
  79. Chhieng DC. Fine needle aspiration biopsy of liver - an update. World J Surg Oncol. 2004;2:5. (Review article). View the reference
  80. Borhani AA, Wiant A, Heller MT. Cystic hepatic lesions: a review and an algorithmic approach. AJR Am J Roentgenol. 2014;203(6):1192-204. (Review article). View the reference
  81. Sporea I, Badea R, Martie A, Sirli R, Socaciu M, Popescu A, et al. Contrast enhanced ultrasound for the characterization of focal liver lesions. Med Ultrason. 2011;13(1):38-44. (Level III evidence). View the reference
  82. Ryu SW, Bok GH, Jang JY, Jeong SW, Ham NS, Kim JH, et al. Clinically useful diagnostic tool of contrast enhanced ultrasonography for focal liver masses: comparison to computed tomography and magnetic resonance imaging. Gut Liver. 2014;8(3):292-7. (Level III evidence). View the reference
  83. Westwood M, Joore M, Grutters J, Redekop K, Armstrong N, Lee K, et al. Contrast-enhanced ultrasound using SonoVue(R) (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2013;17(16):1-243. (Level II/III evidence). View the reference
  84. Mainenti PP, Romano F, Pizzuti L, Segreto S, Storto G, Mannelli L, et al. Non-invasive diagnostic imaging of colorectal liver metastases. World J Radiol. 2015;7(7):157-69. (Review article). View the reference
  85. Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 2010;257(3):674-84. (Level I/II evidence). View the reference
  86. Deng J, Tang J, Shen N. Meta-analysis of diagnosis of liver metastatic cancers: comparison of (18) FDG PET-CT and gadolinium-enhanced MRI. J Med Imaging Radiat Oncol. 2014;58(5):532-7. (Level I/II evidence). View the reference
  87. Fu GL, Du Y, Zee CS, Yang HF, Li Y, Duan RG, et al. Gadobenate dimeglumine-enhanced liver magnetic resonance imaging: value of hepatobiliary phase for the detection of focal liver lesions. J Comput Assist Tomogr. 2012;36(1):14-9. (Level III evidence). View the reference
  88. Chen L, Zhang J, Zhang L, Bao J, Liu C, Xia Y, et al. Meta-analysis of Gadoxetic acid disodium (Gd-EOB-DTPA) -enhanced magnetic resonance imaging for the detection of liver metastases. PLoS ONE. 2012;7(11):e48681. (Level I evidence). View the reference
  89. Kim YK, Park G, Kim CS, Yu HC, Han YM. Diagnostic efficacy of gadoxetic acid-enhanced MRI for the detection and characterisation of liver metastases: comparison with multidetector-row CT. Radiol. 2012;85(1013):539-47. (Level III evidence). View the reference
  90. Bottcher J, Hansch A, Pfeil A, Schmidt P, Malich A, Schneeweiss A, et al. Detection and classification of different liver lesions: comparison of Gd-EOB-DTPA-enhanced MRI versus multiphasic spiral CT in a clinical single centre investigation. Eur J Radiol. 2013;82(11):1860-9. (Level III evidence). View the reference
  91. Lee KH, Lee JM, Park JH, Kim JH, Park HS, Yu MH, et al. MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent gadoxetic acid. Korean J Radiol. 2013;14(6):894-904. (Level II/III evidence). View the reference
  92. Eiber M, Fingerle AA, Brugel M, Gaa J, Rummeny EJ, Holzapfel K. Detection and classification of focal liver lesions in patients with colorectal cancer: retrospective comparison of diffusion-weighted MR imaging and multi-slice CT. Eur J Radiol. 2012;81(4):683-91. (Level III evidence). View the reference
  93. Chen Z-G, Xu L, Zhang S-W, Huang Y, Pan R-H. Lesion discrimination with breath-hold hepatic diffusion-weighted imaging: a meta-analysis. World J Gastroenterol. 2015;21(5):1621-7. (Level I evidence). View the reference
  94. Holzapfel K, Eiber MJ, Fingerle AA, Bruegel M, Rummeny EJ, Gaa J. Detection, classification, and characterization of focal liver lesions: value of diffusion-weighted MR imaging, gadoxetic acid-enhanced MR imaging and the combination of both methods. Abdom Imaging. 2012;37(1):74-82. (Level III evidence). View the reference
  95. Tajima T, Akahane M, Takao H, Akai H, Kiryu S, Imamura H, et al. Detection of liver metastasis: is diffusion-weighted imaging needed in Gd-EOB-DTPA-enhanced MR imaging for evaluation of colorectal liver metastases? Jpn J Radiol. 2012;30(8):648-58. (Level II/III evidence). View the reference
  96. Wu LM, Hu J, Gu HY, Hua J, Xu JR. Can diffusion-weighted magnetic resonance imaging (DW-MRI) alone be used as a reliable sequence for the preoperative detection and characterisation of hepatic metastases? A meta-analysis. Eur J Cancer. 2013;49(3):572-84. (Level I evidence). View the reference
  97. Wei C, Tan J, Xu L, Juan L, Zhang SW, Wang L, et al. Differential diagnosis between hepatic metastases and benign focal lesions using DWI with parallel acquisition technique: a meta-analysis. Tumour Biol. 2015;36(2):983-90. (Level I evidence). View the reference
  98. Maffione AM, Lopci E, Bluemel C, Giammarile F, Herrmann K, Rubello D. Diagnostic accuracy and impact on management of (18)F-FDG PET and PET/CT in colorectal liver metastasis: a meta-analysis and systematic review. Eur J Nucl Med Mol Imaging. 2015;42(1):152-63. (Level I evidence). View the reference
  99. Yang J, Kan Y, Ge BH, Yuan L, Li C, Zhao W. Diagnostic role of gallium-68 DOTATOC and gallium-68 DOTATATE PET in patients with neuroendocrine tumors: a meta-analysis. Acta Radiol. 2014;55(4):389-98. (Level I evidence). View the reference
  100. Geijer H, Breimer LH. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40(11):1770-80. (Level I evidence). View the reference
  101. Armbruster M, Zech CJ, Sourbron S, Ceelen F, Auernhammer CJ, Rist C, et al. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J Magn Reson Imaging. 2014;40(2):457-66. (Level II/III evidence). View the reference
  102. McGahan JP, Bishop J, Webb J, Howell L, Torok N, Lamba R, et al. Role of FNA and core biopsy of primary and metastatic liver disease. Int J Hepatol. 2013;2013:174103. (Level III evidence). View the reference

{tab=Information for Consumers}

Information for Consumers


Information from this website


Information from the Royal Australian and New Zealand College of Radiologists’ website



Radiation Risks of X-rays and Scans


Computed Tomography (CT)


Magnetic Resonance Imaging (MRI)


Ultrasound



Computed Tomography (CT)


Contrast Medium (Gadolinium versus Iodine)


Gadolinium Contrast Medium


Iodine-Containing Contrast Medium


Magnetic Resonance Imaging (MRI)


Radiation Risk of Medical Imaging During Pregnancy


Radiation Risk of Medical Imaging for Adults and Children


Ultrasound


Nuclear Medicine


{tab=copyright|hidden}

Copyright

© Copyright 2015, Department of Health Western Australia. All Rights Reserved. This web site and its content has been prepared by The Department of Health, Western Australia. The information contained on this web site is protected by copyright.


Legal Notice

Please remember that this leaflet is intended as general information only. It is not definitive and The Department of Health, Western Australia can not accept any legal liability arising from its use. The information is kept as up to date and accurate as possible, but please be warned that it is always subject to change

.
{/tabs}

File Formats

Some documents for download on this website are in a Portable Document Format (PDF). To read these files you might need to download Adobe Acrobat Reader.

Get Adobe Reader